

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Amandroid challenges

Before you take one of the challenges, please contact @fgwei [https://github.com/fgwei] to let him aware. And put a mark (e.g., Resolving by @fgwei [https://github.com/fgwei]) in the end of the challenge to avoid any situation of conflict. You can create a PR following guidance in CONTRIBUTING.md after you resolved it.

Continuous tasks

#c1. All the APIs should be documented. (Post by @fgwei [https://github.com/fgwei])

#c2. Error handling in the code need to be cleaned. (Post by @fgwei [https://github.com/fgwei])

#c3. Amandroid documentations need to be revised. (Post by @fgwei [https://github.com/fgwei])(Resolving by @fgwei [https://github.com/fgwei])

org.argus.jawa.alir

In package org.argus.jawa.alir.pta.reachingFactsAnalysis.model:

	#c4. We need to add more models for java apis. (Post by @fgwei [https://github.com/fgwei])

	#c5. Models actually sharing similar desings, the best way of doing it is designing a DSL to write the model in a simpler way and generate the model codes automatically. (Important!) (Post by @fgwei [https://github.com/fgwei])

	#c6. API model need to be redesigned to input/output general datas, which allows multiple points-to analysis can share the same model, e.g., SuperSpark and RFA. (Post by @fgwei [https://github.com/fgwei])

#c7. In package org.argus.jawa.alir.taintAnalysis, we need to implement monotonic data flow analysis based on demand taint analysis, many situations need such analysis to get better performance. (Post by @fgwei [https://github.com/fgwei])

org.argus.amandroid.core

#c8. In package org.argus.amandroid.core.parser, the LayoutFileParser.scala and ManifestParser.scala only can handle plain text xml files. Better design is to read from raw xml files from apk directly, and parse the equivalent information as current parsers. (Important!) (Post by @fgwei [https://github.com/fgwei])

#c9. In package org.argus.amandroid.core.appInfo, the ReachableInfoCollector.scala need to be updated for adding more callbacks. (Post by @fgwei [https://github.com/fgwei])

In package org.argus.amandroid.core.dedex,

	#c10. Register type resolving in DedexTypeResolver.scala and DexInstructionToPilarParser.scala need to be tested and cleaned (or even redesigned). The main beast is the const4 resoling, as it can be int/short/boolean 0 or object null. (Important!) (Post by @fgwei [https://github.com/fgwei])

	#c11. Make the decompiling process faster. (Post by @fgwei [https://github.com/fgwei])

org.argus.amandroid.alir

In package org.argus.amandroid.alir.pta.reachingFactsAnalysis.model:

	#c12. We need to add more models for android apis. (Post by @fgwei [https://github.com/fgwei])

	#c13. Models actually sharing similar desings, the best way of doing it is designing a DSL to write the model in a simpler way and generate the model codes automatically. (Important!) (Post by @fgwei [https://github.com/fgwei])

#c14. Package org.sireum.amandroid.java need to be added, and developing jawa to java translator. (Major task.) (Post by @fgwei [https://github.com/fgwei])

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at fgwei521@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Welcome! Thank you for contributing to Argus-SAF!

We follow the standard GitHub fork & pull [https://help.github.com/articles/using-pull-requests/#fork--pull]
approach to pull requests. Just fork the official repo, develop in a branch, and submit a PR!

You’re always welcome to submit your PR straight away and start the discussion.
The goal of these notes is to make your experience contributing to Argus-SAF as
smooth and pleasant as possible. We’re happy to guide you through the process once you’ve submitted your PR.

What kind of PR are you submitting?

You don’t need to submit separate PRs for different version of Argus-SAF.
Any changes accepted on one of these branches will, in time, be merged into the later branches.

Documentation

Whether you finally decided you couldn’t stand that annoying typo anymore,
you fixed the outdated code sample in some comment, or you wrote a nice,
comprehensive, overview for an under-documented package,
some docs for a class or the specifics about a method,
your documentation improvement is very much appreciated, and we will do our best to fasttrack it.

You can make these changes directly in your browser in GitHub,
or follow the same process as for code. Up to you!

For bigger documentation changes, you may want to poll the (fgwei521@gmail.com) mailing list first,
to quickly gauge whether others support the direction you’re taking,
so there won’t be any surprises when it comes to reviewing your PR.

Code

For bigger changes, we do recommend announcing your intentions on fgwei521@gmail.com first,
to avoid duplicated effort, or spending a lot of time reworking something we are not able to
change at this time in the release cycle, for example.

Bug Fix

Prefix your commit title with “#NN”, where https://github.com/arguslab/Argus-SAF/issues/NN tracks the bug you’re fixing.
We also recommend naming your branch after the ticket number.

Enhancement or New Feature

For longer-running development, likely required for this category of code contributions,
we suggest you include “topic/” or “wip/” in your branch name,
to indicate that this is work in progress, and that others should be prepared to rebase if they branch off your branch.

Any language change (including bug fixes) must be accompanied by the relevant updates to the spec, which lives in the same repository for this reason.

Guidelines

Here is some advice on how to craft a pull request with the best possible
chance of being accepted.

Tests

Bug fixes should include regression tests – in the same commit as the fix.

If testing isn’t feasible, the commit message should explain why.

New features and enhancements must be supported by a respectable test suite.

Some characteristics of good tests:

	includes comments: what is being tested and why?

	be minimal, deterministic, stable (unaffected by irrelevant changes), easy to understand and review

	have minimal dependencies

Documentation

This is of course required for new features and enhancements.

Any API additions should include Scaladoc.

Consider updating the package-level doc (in the package object), if appropriate.

Coding standards

Please follow these standard code standards, though in moderation (scouts quickly learn to let sleeping dogs lie):

	Don’t violate DRY [http://programmer.97things.oreilly.com/wiki/index.php/Don%27t_Repeat_Yourself].

	Follow the Boy Scout Rule [http://programmer.97things.oreilly.com/wiki/index.php/The_Boy_Scout_Rule].

Clean commits, clean history

A pull request should consist of commits with messages that clearly state what problem the commit resolves and how.

Commit logs should be stated in the active, present tense.

A commit’s subject should be 72 characters or less. Overall, think of
the first line of the commit as a description of the action performed
by the commit on the code base, so use the active voice and the
present tense. That also makes the commit subjects easy to reuse in
release notes.

For a bugfix, the title must look like “#NN - don’t crash when
moon is in wrong phase”.

If a commit purely refactors and is not intended to change behaviour,
say so.

Here is standard advice on good commit messages:
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Pass code review

Your PR will need to be assigned to a reviewer. (Now just assign to @fgwei [https://github.com/fgwei].)

To assign a reviewer, add a “review by @reviewer” to your PR description.

NOTE: it’s best not to @mention in commit messages, as github pings you every time a commit with your @name on it shuffles through the system (even in other repos, on merges,…).

A reviewer gives the green light by commenting “LGTM” (looks good to me).

A review feedback may be addressed by pushing new commits to the request, if these commits stand on their own.

Once all these conditions are met, and we agree with the change, we will merge your changes.

Contributors for Amandroid!

| | username | institute | contribute |
———————|———————————————-|—————————————|——————————————————————-|
Fengguo Wei | @fgwei [https://github.com/fgwei] | University of South Florida | Argus-SAF initiator, framework & plugin contributor, project & website & documentation maintainer |
Sankardas Roy | @sankardas [https://github.com/sankardas] | Bowling Green State University | Argus-SAF initiator, framework contributor |
Robby | @robby-phd [https://github.com/robby-phd] | Kansas State University | Argus-SAF initiator, idea & solution provider |
Xinming (Simon) Ou | @xinmingou [https://github.com/Ichoran] | University of South Florida | Argus-SAF initiator, idea & solution provider |
Wu Zhou | @woodzltc [https://github.com/woodzltc] | Didi Labs | Plugin contributor |
Fengchi Lin | @linfc [https://github.com/linfc] | CPPSU | Plugin Contributor |
Kaushik Nmmala | @kaushin [https://github.com/kaushin] | Bowling Green State University | Plugin contributor |
Rohit Sharma | @RohitSh26 [https://github.com/RohitSh26] | Bowling Green State University | Online service contributor|

Argus-SAF: Argus static analysis framework

[image: License] [https://opensource.org/licenses/EPL-1.0]
[image: Download] [https://bintray.com/arguslab/maven/argus-saf/_latestVersion]
[image: Build Status] [https://travis-ci.org/arguslab/Argus-SAF]
[image: Codacy Badge] [https://www.codacy.com/app/fgwei521/Argus-SAF?utm_source=github.com&utm_medium=referral&utm_content=arguslab/Argus-SAF&utm_campaign=Badge_Grade]
[image: Codacy Badge] [https://www.codacy.com/app/fgwei521/Argus-SAF?utm_source=github.com&utm_medium=referral&utm_content=arguslab/Argus-SAF&utm_campaign=Badge_Coverage]

This is official reporitory for the Argus-SAF [http://pag.arguslab.org/argus-saf].

For test and play with Argus-SAF, you can fork from our Argus-SAF-playground [https://github.com/arguslab/Argus-SAF-playground]
project, which have the basic setup for a Argus-SAF enhanced project with demo codes of how to perform different kind of analysis.

Repository structure

Argus-SAF/
+--src/main/scala/org.argus.saf Main class for argus-saf CLI.
+--org.argus.jawa Core static analysis data structures, "*.class"&"*.jawa" file managing, jawa compiler, class hierarchy, method body resolving, flow analysis, etc.
+--org.argus.amandroid Android resource parsers, information collector, decompiler, environment method builder, flow analysis, etc.
+--org.argus.amandroid.concurrent Akka actors for Amandroid.

Obtaining Argus-SAF as library

Depend on Jawa
[image: Maven Central] [https://maven-badges.herokuapp.com/maven-central/com.github.arguslab/jawa_2.12]
by editing
build.sbt:

libraryDependencies += "com.github.arguslab" %% "jawa" % VERSION

Depend on Amandroid
[image: Maven Central] [https://maven-badges.herokuapp.com/maven-central/com.github.arguslab/amandroid_2.12]
by editing
build.sbt:

libraryDependencies += "com.github.arguslab" %% "amandroid" % VERSION

Note that: Depend on Amandroid will automatically add Jawa as dependency. If you use Maven or Gradle, you should translate it to corresponding format.

Obtaining Argus-SAF CLI Tool

Requirement: Java 8

	Click [image: Download] [https://bintray.com/arguslab/maven/argus-saf/_latestVersion]

	Download argus-saf_***-version-assembly.jar

	Get usage by:

$ java -jar argus-saf_***-version-assembly.jar

Developing Argus-SAF

In order to take part in Argus-SAF development, you need to:

	Install the following software:

	IntelliJ IDEA 14 or higher with compatible version of Scala plugin

	Fork this repository and clone it to your computer

$ git clone https://github.com/arguslab/Argus-SAF.git

	Open IntelliJ IDEA, select File -> New -> Project from existing sources
(if from initial window: Import Project), point to
the directory where Scala plugin repository is and then import it as SBT project.

	When importing is finished, go to Argus-SAF repo directory and run

$ git checkout .idea

in order to get artifacts and run configurations for IDEA project.

	[Optional] To build Argus-SAF more smooth you should give 2GB of the heap size to the compiler process.

	if you use Scala Compile Server (default):
Settings > Languages & Frameworks > Scala Compile Server > JVM maximum heap size

	if Scala Compile Server is disabled:
Settings > Build, Execution, Deployment > Compiler > Build process heap size

	Build Argus-SAF from command line: go to Argus-SAF repo directory and run

$ tools/bin/sbt clean compile test

How to contribute

To contribute to the Argus-SAF, please send us a pull request [https://help.github.com/articles/using-pull-requests/#fork--pull] from your fork of this repository!

For more information on building and developing Argus-SAF, please also check out our guidelines for contributing. People who provided excellent ideas are listed in contributor.

What to contribute

If you don’t know what to contribute,
you can checkout the issue tracker [https://github.com/arguslab/Argus-SAF/issues] with help wanted label, and claim one to help yourself warm up with Argus-SAF.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

